Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Food Microbiol ; 121: 104519, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637081

RESUMEN

Currently, fresh, unprocessed food has become a relevant element of the chain of transmission of enteropathogenic infections. To survive on a plant surface and further spread the infections, pathogens like Salmonella have to attach stably to the leaf surface. Adhesion, driven by various virulence factors, including the most abundant fim operon encoding type 1 fimbriae, is usually an initial step of infection, preventing physical removal of the pathogen. Adhesion properties of Salmonella's type 1 fimbriae and its FimH adhesin were investigated intensively in the past. However, there is a lack of knowledge regarding its role in interaction with plant cells. Understanding the mechanisms and structures involved in such interaction may facilitate efforts to decrease the risk of contamination and increase fresh food safety. Here, we applied Salmonella genome site-directed mutagenesis, adhesion assays, protein-protein interactions, and biophysics methods based on surface plasmon resonance to unravel the role of FimH adhesin in interaction with spinach leaves. We show that FimH is at least partially responsible for Salmonella binding to spinach leaves, and this interaction occurs in a mannose-independent manner. Importantly, we identified a potential FimH receptor as endo-1,3-ß-d-Glucanase and found that this interaction is strong and specific, with a dissociation constant in the nanomolar range. This research advances our comprehension of Salmonella's interactions with plant surfaces, offering insights that can aid in minimizing contamination risks and improving the safety of fresh, unprocessed foods.


Asunto(s)
Manosa , Salmonella typhimurium , Salmonella typhimurium/genética , Manosa/metabolismo , Spinacia oleracea , Proteínas Fimbrias/genética , Proteínas Fimbrias/química , Proteínas Fimbrias/metabolismo , Adhesinas Bacterianas/genética , Adhesión Bacteriana/genética
2.
Vet Res ; 54(1): 99, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37875985

RESUMEN

Initial stages of Salmonella Typhimurium infection involve a series of coordinated events aimed at reaching, attaching to, and invading host cells. Virulence factors such as flagella, fimbriae, and secretion systems play crucial roles in these events and are regulated in response to the host environment. The first point of contact between the pathogen and host is the intestinal epithelial layer, which normally serves as a barrier against invading pathogens, but can also be an entry site for pathogens. The integrity of this barrier can be modulated by the hypoxic environment of the intestines, created by the presence of trillions of microbes. Variable oxygen concentrations can strongly affect many functions of the gut, including secretion of cytokines and growth factors from the host site and affect the ability of Salmonella to persist, invade, and replicate. In this study, we investigated the first stages of Salmonella Typhimurium infection under hypoxic conditions in vitro and found that low oxygen levels significantly decreased bacterial adhesion. Using adhesion and motility assays, biofilm formation tests, as well as gene expression and cytokine secretion analysis, we identified a hypoxia-specific cross-talk between the expression of type 1 fimbriae and flagella, suggesting that altered flagellin expression levels affect the motility of bacteria and further impact their adhesion level, biofilm formation ability, and innate immune response. Overall, understanding how Salmonella interacts with its variable host environment provides insights into the virulence mechanisms of the bacterium and information regarding strategies for preventing or treating infections. Further research is required to fully understand the complex interplay between Salmonella and its host environment.


Asunto(s)
Flagelina , Salmonella typhimurium , Animales , Salmonella typhimurium/genética , Factores de Virulencia/metabolismo , Hipoxia/veterinaria , Oxígeno/metabolismo , Proteínas Bacterianas/genética , Adhesión Bacteriana
3.
Gut Microbes ; 15(1): 2229937, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37401756

RESUMEN

Salmonella poses a serious threat to public health and socioeconomic development worldwide because of its foodborne pathogenicity and antimicrobial resistance. This biofilm-planktonic lifestyle enables Salmonella to interfere with the host and become resistant to drugs, conferring inherent tolerance to antibiotics. The complex biofilm structure makes bacteria tolerant to harsh conditions due to the diversity of physiological, biochemical, environmental, and molecular factors constituting resistance mechanisms. Here, we provide an overview of the mechanisms of Salmonella biofilm formation and antibiotic resistance, with an emphasis on less-studied molecular factors and in-depth analysis of the latest knowledge about upregulated drug-resistance-associated genes in bacterial aggregates. We classified and extensively discussed each group of these genes encoding transporters, outer membrane proteins, enzymes, multiple resistance, metabolism, and stress response-associated proteins. Finally, we highlighted the missing information and studies that need to be undertaken to understand biofilm features and contribute to eliminating antibiotic-resistant and health-threatening biofilms.


Asunto(s)
Microbioma Gastrointestinal , Biopelículas , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Salmonella/genética , Farmacorresistencia Bacteriana/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...